Agri-tech is commonly described as the ‘Fourth Agricultural Revolution’, heralding increasing productivity from our agricultural activities. So how might agri-tech affect and shape the next 10 years of developments in farming machinery?
Providing an insight for Powernews readers is Andy Newbold, editor of Tillage & Soils and Precise magazines, and past president of the Institution of Agricultural Engineers. Here, he shares his thoughts and observations gleaned from a career in the field of innovation in agriculture.
“Evolution in agricultural practice is nothing new,” says Andy. “Agriculture is one long story of our constant desire for innovation and improvement. It pits human ingenuity against nature’s sheer unpredictability, but every crop of corn that’s ever been grown has added to the collective benefits that experience delivers.
“Yields and efficiencies have soared to levels unimaginable even a century ago,” he points out, “but you don’t need to be involved in agricultural activities to be aware of the current mood music. Everyone’s expecting methods to improve.”
Agriculture’s no stranger to change. Our ancestors’ transition from hunter-gatherers to settled farmers marked the ‘First Agricultural Revolution’, the arrival of mechanisation drove the ‘Second’, and the ‘Third’ gave us the fertilisers and chemicals needed to deliver the yields needed to feed a burgeoning world population. Does Andy think a ‘Fourth Agricultural Revolution’ imminent?
“Right now, the focus is on what technology can deliver,” he says. “Sensors, artificial intelligence, robotics, imaging, connected devices, data analytics - even the meat-free burger – are all touted by manufacturers as promising further advances in yield, efficiency or profitability.
“Vertical, or indoor farming, is increasingly featuring as part of this ‘Agriculture 4.0’ agri-tech vision within machinery shows,” says Andy, “but while it’s an interesting development for particular crops and certain regions, I don’t think anyone doubts that agriculture will always remain a largely outdoor, land-based, soil-focused activity.
“So we ignore further mechanical advances at our peril.”
Agriculture, especially tillage agriculture, remains reliant on the tractor, Andy points out. It’s a machine that, at its most basic level, has changed little in 100 years: it was designed as, and remains, a self-powered vehicle to deliver high traction at low speeds.
One of its most notable advances was Harry Ferguson’s three-point linkage. “With its universal adoption by every tractor, it is now incredible that there was once competition for hitch systems between manufacturers,” says Andy. “Imagine walking around one of today’s machinery shows and the choice of implements being limited to those available from each tractor manufacturer!
“Of course, the three-point hitch wasn’t just about having universal implements,” Andy acknowledges. “Ferguson designed the three-point hitch around the plough. His design ensured that resistive forces generated by the plough were transferred to the tractor’s rear wheels as downward force. The tractor enjoyed a more favourable power to weight ratio as a result, making a smaller tractor more productive and economical to run.”
Over the last 80 years, advances in engine design, transmission, driven wheels, electronics, implement control and – not least – operator comfort and safety – have all added to the agricultural tractor’s abilities and appeal.
“But it has been a story of evolution rather than revolution. A tractor is a tractor is a tractor.”
As to the developments in farming machinery that will emerge over the next decade, Andy says his expectations are for incremental change, rather than radical. “Manufacturers’ themes at shows are beginning to trend around some common areas: how we manage the soil, how we manage crops, and how we manage the machinery itself.”
A regular Agritechnica visitor like Andy can’t have failed to notice another machinery trend: size. There’s a dichotomy between the ever-increasing bulk of farm machinery and the recognition that we must look after soil.
“Even Ferguson was alert to soil compaction risks; that was with a two-point plough, attached to a tractor weighing little more than one tonne. Now we’re pulling 12-furrow ploughs with 25-tonne tractors.”
But there’s a bigger concern. Agriculture is a major contributor to greenhouse gas (GHG) emissions – as much as 24 percent of global emissions, according to the UN’s Food and Agriculture Organization (FAO)1. Soil acts as a massive carbon sink, so intensive cultivation such as ploughing can release vast quantities of carbon – as much as three tonnes per hectare, according to the Farm Carbon Cutting Toolkit2, a farmer-led group that provides advice to help farmers act on GHG emissions.
“In the UK, the National Farmers Union has committed to the ambitious goal of making agriculture ‘net zero’ by 2040,” Andy notes. “It’s cited actions to reduce the need for cultivations as an example of what farmers can do.
“Implement manufacturers have responded to farmers’ switch to minimum or zero tillage system, and this will likely reduce the demand for powerful, but large and heavy, tractors. That may lead further changes in how farmers approach field-based tasks with machinery, something which engine manufacturers need to keep abreast of.”
One of the most exciting developments over the next decade is likely to be how tractors and implements communicate. While the adoption of ISOBUS has been valuable in standardising connections and interfaces – another three-point linkage moment – with the standard in place, further opportunities arise.
“There’s been a big buzz about Tractor Implement Management (TIM). This ISOBUS-based system gives an implement control of a tractor for functions such as PTO, ground speed, steering, and lift, by communicating with the engine ECU,” explains Andy.
“Using TIM, an operator no longer has to repeat ‘stop, open door, close door, start’ while making round bales, for example. The tractor and implement do it automatically.
“A power harrow could sense soil conditions, instructing the tractor to go more slowly or speed up the PTO to maintain a consistent soil crumb across the field.”
Developments like these, evolving existing standards while maintaining a degree of backwards-compatibility, allow creeping adoption of innovation, rather than forcing farmers into a wholesale switch or the VHS v Betamax risk of betting on the ‘wrong horse’.
TIM also brings mechanisation a step closer to autonomy: the driverless tractor. But completely driverless machines, while appealing in terms maximising labour resources, can present practical problems in moving machines from location to location.
“I think there’s a strong possibility that a ‘hybrid’ could emerge, with a ‘standard’ tractor having both driver and driverless modes,” says Andy. “An operator would drive it to the field before switching into a pre-programmed driverless mode to complete a task with a TIM-enabled implement.”
Battery-electric tractors have made several concept appearances at recent events. But practical problems remain, not least battery power and the challenge of charging. “While they look great on the stand, to operate a 500 hp tractor electrically, at 50 percent engine load for 12 hours, would – using existing battery technology – need a battery weighing 15 tonnes.
“For the moment, electric power won’t replace diesel – certainly not as a like-for-like on heavy field operation equipment – but we’ll likely see it being integrated with certain tractor power functions alongside the diesel engine,” suggests Andy.
Electrically powered autonomous robots provide one example. Rapid advances in robotics and data analytics make it possible to map a field, then use artificial intelligence (AI) to view the imagery and record where weeds are growing.
Also coming to a field near you is the drone. Besides weed-spotting, European farmers use them to map fields for soil type and fertiliser application, although legislation doesn’t allow their use in aerial spraying. But in China, where thousands of drone ‘pilots’ have been trained, whole fleets of drones fly in formation, spraying millions of hectares.
“At Agritechnica Asia, drone manufacturers are one of the most well-represented categories,” says Andy. “The latest models can map fields, distribute seeds, spread fertilisers and apply pesticides.
“With a 10m spray width and unmanned work rate of up to 20/ha per hour, drones look set to become a viable agricultural workhorse for some parts of the world.”
Andy says ten years is a relatively short time in agriculture. “Change can be slow. If buying new, farmers expect to keep machinery for up to 12 years, tractors perhaps 15. Then of course there’s the used market, which means there can be quite a lag before new ideas seen at the glitzy shows ever see significant levels of penetration.
“I think even with the current enthusiasm surrounding agri-tech, it’s likely to be a case of evolution rather than revolution.”
Andy is a fellow of the Institution of Agricultural Engineers (IAgrE), a past president and a chartered engineer. He co-authored the AHDB Soil management for arable crops guide, edits Tillage & Soils and Precise magazines and is the event manager for Tillage-Live, ScotGrass and the National Sprayer Demonstration.
Share this story and get involved in the conversation on social media #Powernews
Perkins has announced a power uplift to the popular 3.6 litre variant.
Read moreWe chat to Corey Berry following the successful showings at American Rental Association (ARA) and United Rentals exhibitions.
Read moreWe headed to Malaga, Spain, to learn more and see the machine in action.
Read moreWhat might the coming months hold? Powernews does some opinion legwork, so you don’t have to.
Read morePowernews caught up with Sylvia to learn more about her responsibilities, motivations, and leadership journey.
Read moreHow our Customer Solutions and Engineering teams are actively helping customers reduce fuel consumption.
Read moreMore than 280,000 visitors from across the world attended this year’s four-day long Bauma China exhibition in Shanghai.
Read moreThe state’s farmers grow more than 400 commodity crops, 19 of them unique to the Golden State.
Read moreAvailable in the second half of 2025, the 2600 Series offers excellent load acceptance, fuel efficiency and versatility.
Read moreAdrian Bell dives into the history of Californian agriculture.
Read moreThe importance of thermal fluids simulation.
Read moreHow ‘noise chambers’ help Perkins build quieter engines.
Read moreThe global voice for agricultural equipment manufacturers.
Read moreMeet our Vice President of facility operations.
Read moreThe customer benefits achieved through Perkins’ new connectivity solutions.
Read moreThe new Perkins global marketing and channel development director.
Read moreThings are different when it’s very, very cold.
Read moreEngineering manager Graham Hill explains the importance of structural simulation when designing a new engine.
Read moreThe platform will cover two key power nodes.
Read moreInterview with Susterre CEO Michael Cully on the latest no-till soil solutions.
Read moreA compact 12 cylinder powerhouse.
Read moreFor 60 years Lindner has chosen Perkins engines to power its machines.
Read morePerkins kicks off Project Coeus to demonstrate leading-edge hydrogen hybrid power solutions.
Read moreDependable electric power generation drives sales of Perkins® 4000 Series in India.
Read morePerkins launches the next generation 2600 Series engine.
Read moreAdding to the product range with an 18-litre engine.
Read moreFind out how this vast country approaches agriculture and food production.
Read moreBy re-examining, reimagining, and re-engineering what is expected.
Read moreA clear demonstration of what's possible when a passion for innovation meets a commitment to excellence.
Read moreWith local resources and global support.
Read moreAdvance power solutions from Perkins.
Read morePart three of our series with Dave Robinson.
Read moreJaz Gill talks Perkins new brand strategy.
Read moreThe Perkins® 5000 Series engines generating reliable power for critical applications.
Read moreRental expert Dave Stollery gives his view on the opportunities around rolling out EU Stage V equipment.
Read moreIf you want to get back to engineering, this programme can be the key to making it happen.
Read moreConstantly innovating to meet the changing electric power marketplace.
Read moreAn appropriate environmental, social and governance (ESG) proposition really matters.
Read moreManufacturing industrial engines at our Curitiba facility since 2003.
Read morePerkins Aurangabad celebrates the production of its 10,000th 4000 Series engine.
Read moreThe heart of sustainable power.
Read moreOffering a complete solution for off-highway engines in Latin America.
Read moreWacker Neuson’s new EW100 10-ton mobile excavator
Read moreFifty years of support for the written word in agriculture.
Read morePerkins rental industry commitment continues to grow.
Read moreSupporting the STEM development of future generations.
Learn MoreRenewable and low carbon intensity fuels in Perkins engines.
Read morePart 2 of our three part interview series with Perkins’ Dave Robinson.
Read moreThe launch of the complete range of 5000 Series full authority electronic engines.
Read morePerkins is actively supporting the rental industry's transition to the latest EU Stage V technologies.
Read morePowered by the compact and powerful Perkins® 904 Series.
Read morePerkins EAME business development director Dave Robinson writes on 'power on the farm'.
Read moreThe Perkins Rental Support Programme has already been adopted in some form by virtually every significant rental business in the world.
Read moreDid you know that Türkiye is the world’s fourth-biggest tractor market? Take a closer look – from an agricultural perspective – at this fascinating country.
Read moreThe Perkins® 904 Series family of Industrial Open Power Units provide customers with ‘plug-and-play’ engines that often can be fitted to a broad range of equipment.
Read moreThe Curitiba plant has delivered more than 300,000 engines since 2003 including engines meeting MAR-1 emission standards.
Read moreWhy the popularity of telehandlers is reaching new heights.
Read moreWhy data has become a priceless commodity in modern construction.
Read moreTalk of reaching ‘net zero’ is frequently discussed, but what does net zero look like for agriculture?
Read moreWhy the rental industry is so well placed to support sustainability goals.
Read moreWould you buy a diesel-powered mobile phone?
Read moreDiscover more about the benefits of moving to Stage V power.
Read moreWho will be the farmer of tomorrow and what skills will they have?
Read moreLow noise, vibration and harshness is important to both OEMs and the end user.
Read moreInsatiable demand for data in South Africa is driving a huge growth in data centres.
Read moreWhat does urban construction look like over the next decade?
Read morePutting people into plant.
Read moreThe electric charge: how access to reliable power is fuelling prosperity across the globe.
Read morePutting the shine on sustainability.
Read moreCollaboration: in search of excellence.
Read moreHow can manufacturing businesses move stock like clockwork?
Read moreWhat are the key benefits of downsizing engine capacity in the materials handling.
Read moreThe future of diesel-driven power generation keeps getting brighter.
Read moreImportant information and tips to make the best decision for your next job.
Read more